- Published on
leetcode-146 LRU Cache
- Authors

- Name
- Gene Zhang
Key Concept: Hash Map + Doubly Linked List - Combine hash map (for O(1) access) with doubly linked list (for O(1) insertion/deletion). Most recently used at head, least recently used at tail.
Pattern: Classic system design problem for implementing cache with eviction policy.
# Design a data structure that follows the constraints of a Least Recently Used (LRU) cache.
#
# Implement the LRUCache class:
# - LRUCache(int capacity) Initialize the LRU cache with positive size capacity.
# - int get(int key) Return the value if key exists, otherwise return -1.
# - void put(int key, int value) Update the value if key exists. Otherwise, add
# the key-value pair. If the number of keys exceeds capacity, evict the LRU key.
#
# The functions get and put must each run in O(1) average time complexity.
#
# Example:
# Input: ["LRUCache", "put", "put", "get", "put", "get", "put", "get", "get", "get"]
# [[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]]
# Output: [null, null, null, 1, null, -1, null, -1, 3, 4]
#
# Constraints:
# 1 <= capacity <= 3000
# 0 <= key <= 10^4
# 0 <= value <= 10^5
# At most 2 * 10^5 calls will be made to get and put.
class DLLNode:
"""Doubly Linked List Node"""
def __init__(self, key=0, value=0):
self.key = key
self.value = value
self.prev = None
self.next = None
class LRUCache:
def __init__(self, capacity: int):
self.capacity = capacity
self.cache = {} # key -> DLLNode
# Dummy head and tail for easier manipulation
self.head = DLLNode()
self.tail = DLLNode()
self.head.next = self.tail
self.tail.prev = self.head
def _remove(self, node: DLLNode) -> None:
"""Remove node from linked list"""
node.prev.next = node.next
node.next.prev = node.prev
def _add_to_head(self, node: DLLNode) -> None:
"""Add node right after head (most recently used)"""
node.next = self.head.next
node.prev = self.head
self.head.next.prev = node
self.head.next = node
def _move_to_head(self, node: DLLNode) -> None:
"""Move existing node to head"""
self._remove(node)
self._add_to_head(node)
def _remove_tail(self) -> DLLNode:
"""Remove and return node before tail (LRU)"""
node = self.tail.prev
self._remove(node)
return node
def get(self, key: int) -> int:
if key not in self.cache:
return -1
node = self.cache[key]
self._move_to_head(node) # Mark as recently used
return node.value
def put(self, key: int, value: int) -> None:
if key in self.cache:
# Update existing key
node = self.cache[key]
node.value = value
self._move_to_head(node)
else:
# Add new key
node = DLLNode(key, value)
self.cache[key] = node
self._add_to_head(node)
if len(self.cache) > self.capacity:
# Evict LRU
lru = self._remove_tail()
del self.cache[lru.key]
# Using OrderedDict (Python 3.7+)
from collections import OrderedDict
class LRUCache2:
def __init__(self, capacity: int):
self.capacity = capacity
self.cache = OrderedDict()
def get(self, key: int) -> int:
if key not in self.cache:
return -1
# Move to end (most recently used)
self.cache.move_to_end(key)
return self.cache[key]
def put(self, key: int, value: int) -> None:
if key in self.cache:
# Move to end
self.cache.move_to_end(key)
self.cache[key] = value
if len(self.cache) > self.capacity:
# Remove first item (LRU)
self.cache.popitem(last=False)
# Both approaches: Time O(1) for get and put, Space O(capacity)
#
# Data Structure Choice:
# - Hash Map: O(1) access to any key
# - Doubly Linked List: O(1) removal and insertion
# - Head: Most recently used
# - Tail: Least recently used
#
# Operations:
# - get(): Move accessed node to head
# - put(): Add/update node at head, evict from tail if needed
#
# Why Doubly Linked List?
# - Need to remove from middle (requires prev pointer)
# - Need to add to front (requires next pointer)
# - Singly linked wouldn't work efficiently
#
# AirBnB: Extremely common, tests system design knowledge
# Follow-up questions: Thread safety, TTL, cache invalidation