- Published on
leetcode-208 Implement Trie (Prefix Tree)
- Authors

- Name
- Gene Zhang
[208] Implement Trie (Prefix Tree)
Key Concept: Trie Data Structure - A tree where each node represents a character. Used for efficient prefix operations. Each node has up to 26 children (for lowercase letters) and a flag indicating if it's the end of a word.
Use cases: Auto-complete, spell checker, IP routing, dictionary implementation.
# A trie or prefix tree is a tree data structure used to efficiently store and
# retrieve keys in a dataset of strings. Applications include autocomplete and
# spellchecker.
# Implement the Trie class with:
# - Trie() Initializes the trie object.
# - void insert(String word) Inserts the string word into the trie.
# - boolean search(String word) Returns true if word is in the trie.
# - boolean startsWith(String prefix) Returns true if there is a previously
# inserted string that has the prefix.
#
# Example:
# Input: ["Trie", "insert", "search", "search", "startsWith", "insert", "search"]
# [[], ["apple"], ["apple"], ["app"], ["app"], ["app"], ["app"]]
# Output: [null, null, true, false, true, null, true]
#
# Constraints:
# 1 <= word.length, prefix.length <= 2000
# word and prefix consist only of lowercase English letters.
class TrieNode:
def __init__(self):
self.children = {} # Dictionary mapping char -> TrieNode
self.is_end_of_word = False
class Trie:
def __init__(self):
self.root = TrieNode()
def insert(self, word: str) -> None:
"""Insert a word into the trie."""
node = self.root
for char in word:
# Create new node if path doesn't exist
if char not in node.children:
node.children[char] = TrieNode()
node = node.children[char]
# Mark end of word
node.is_end_of_word = True
def search(self, word: str) -> bool:
"""Returns True if word is in the trie."""
node = self.root
for char in word:
if char not in node.children:
return False
node = node.children[char]
# Must be marked as end of word
return node.is_end_of_word
def startsWith(self, prefix: str) -> bool:
"""Returns True if there is any word with the given prefix."""
node = self.root
for char in prefix:
if char not in node.children:
return False
node = node.children[char]
return True
# Alternative: Using array instead of dict for children
class TrieNode2:
def __init__(self):
self.children = [None] * 26 # For 'a' to 'z'
self.is_end_of_word = False
class Trie2:
def __init__(self):
self.root = TrieNode2()
def insert(self, word: str) -> None:
node = self.root
for char in word:
idx = ord(char) - ord('a')
if not node.children[idx]:
node.children[idx] = TrieNode2()
node = node.children[idx]
node.is_end_of_word = True
def search(self, word: str) -> bool:
node = self.root
for char in word:
idx = ord(char) - ord('a')
if not node.children[idx]:
return False
node = node.children[idx]
return node.is_end_of_word
def startsWith(self, prefix: str) -> bool:
node = self.root
for char in prefix:
idx = ord(char) - ord('a')
if not node.children[idx]:
return False
node = node.children[idx]
return True
# Time Complexity:
# insert: O(m) where m is length of word
# search: O(m)
# startsWith: O(m)
# Space Complexity: O(ALPHABET_SIZE * N * M) in worst case
# where N is number of words, M is average length
#
# Key Pattern: Trie for prefix-based operations
# Much more efficient than storing all strings and checking each one